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This paper investigates systems driven by temporal-spatial noise using two models, i.e., a spatially periodic
model, and a model with infinite globally coupled oscillators. The study shows that, for the first model, the
temporal-spatial noise has a stronger effect on the transport of particles than the usual additive and multipli-
cative noise; for the second model, the temporal-spatial noise can restrict the appearance of the symmetry-
breaking nonequilibrium phase transition, in contrast with the case when the system is driven by the usual
multiplicative noise.
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When we study a stochastic system, we usually beli
that the noise existing in the system is stochastic only w
respect to time@1–5# ~Ref. @2# corresponds to the phenom
enon of stochastic resonance, Ref.@3# to non-equilibrium
transition, Ref.@4# to the transport of particles induced b
noise, and Ref.@5# to resonant activation!. But practically,
any matter inevitably contains a foreign substance and
space distribution of the foreign substance is wholly stoch
tic. In addition, when dealing with the problems of co
densed matter systems, we always run into some stoch
variables~noise! with respect to space, such as the spa
distribution for the direction of electron spin, and so o
Because the foreign substance in the system is stochasti
space~or the space distribution for the direction of the ele
tron spin is stochastic, and so on!, the multiplicative noise
caused by the external environmental fluctuation must
random for space and time~in general, we express the effe
of the external environmental fluctuation on the system
multiplicative noise@6,7#, and the influence of the interna
thermal fluctuation on the system as thermal additive no
@6#!, i.e., for the same time multiplicative noise is stochas
at different space. Above we indicate that there is multip
cative noise which is stochastic for time and space. Ther
also thermal additive noise which is stochastic for time a
space. If temperatureT of the system studied by us is sto
chastic with respect to space, thermal additive noise will
random for time and space~since the thermal additive nois
strength is proportional to the temperature!. To solve this
kind of problem, we must use the noise that is stocha
with respect not only to time but also to space. There
another kind of temporal-spatial noise, which is stocha
only to time ~not to space!, such as the systems in whic
temperatureT depends on spacex, i.e.,T5T(x), andT(x) is
a deterministic function ofx, and the systems containing in
homogeneous substance in which the space distributio
the substance is deterministic.

In general, one easily mistakenly believes that tempo
spatial noise can be converted to the usual multiplica
noise not related to space. But in practice, temporal-spa
noise cannot be transformed to noise not related to sp
except for some special cases. It will be discussed be
1063-651X/2003/67~6!/061108~5!/$20.00 67 0611
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whether temporal-spatial noise can be converted to gen
noise not related to space. So, it becomes necessary to in
tigate the systems with temporal-spatial noise. In this pap
will first calculate the Fokker-Planck equation~FPE! for the
systems driven by multiplicative temporal-spatial noise, a
then study two models with this temporal-spatial noise.

Consider the following Langevin equations:

ẋi5 f i~x,t !1(
j

gi j ~x,t !j i j ~x,t !, ~1!

^j i j ~x,t !&50,̂ j i j ~x,t !jkl~y,s!&52d j l wik
j ~x,y,t !d~ t2s!,

~2!

wherex5$x1 ,x2 , . . . ,xN%, f i(x,t) andgi j (x,t) are arbitrary
deterministic functions of variablesx and t, and j i j (x,t) is
temporal-spatial Gaussian white noise.xi5xi(t), yi5xi(s),
^ & denotes averaging over temporal-spatial noise,
wik

j (x,y,t) are deterministic functions ofx, y and t
@wik

j (x,y,t).0#. Now, we wish to get a FPE correspondin
to Eqs.~1! and ~2!. To do this, we start with the Kramers
Moyal expansion coefficients@1,8#

Di 1i 2i 3 . . . i n
(n) ~x,t !5

1

n!
lim
t→0

1

t
^~Dxi 1

Dxi 2
•••Dxi n

& ~n>1!,

~3!

in which i 1 ,i 2 ,i 3 , . . . ,i n51,2,3, . . . ,N and

Dxi5xi~ t1t!2xi~ t !

5E
t

t1t

f i@x~s!,s#ds

1(
j
E

t

t1t

gi j @x~s!,s#j i j @x~s!,s#ds.

Below we only study the Stratonovich case. The Ito case
be studied in the same way. We assume the expansion
©2003 The American Physical Society08-1
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f i~y,s!5 f i~x,s!1(
l

N

]xl
f i~x,s!@yl2xl #1•••,

gi j ~y,s!5gi j ~x,s!1(
l

N

]xl
gi j ~x,s!@yl2xl #1•••, ~4!

j i j ~y,s!5j i j ~x,s!1(
l

N

]xl
j i j ~x,s!@yl2xl #1•••. ~5!

Using Eqs.~4! and ~5!, we get
06110
xi~ t1t!2xi~ t !

5E
t

t1t

f i~x,s!ds1E
t

t1t

(
l

N

@]xl
f i~x,s!#@yl2xl #ds

1•••1(
j
E

t

t1t

gi j ~x,s!j i j ~x,s!ds

1(
j
E

t

t1t

gi j ~x,s!(
l

N

@]xl
j i j ~x,s!#~yl2xl !ds

1(
j
E

t

t1t

j i j ~x,s!(
l

N

@]xl
gi j ~x,s!#@yl2xl #ds1•••.

~6!

By iterating quantitiesxi(s)2xi in Eq. ~6! and taking the
average with respect to the noise distributions, we have
^Dxi&5K E
t

t1t

f i~x,s!dsL 1K E
t

t1t

(
l

N

@]xl
f i~x,s!#E

t

s

f l~x,t8!dt8dsL
1K E

t

t1t

(
l

N

@]xl
f i~x,s!#(

j
E

t

s

gl j ~x,t8!j l j ~x,t8!dt8dsL 1•••1K (
j
E

t

t1t

gi j ~x,s!j i j ~x,s!dsL
1K (

j
E

t

t1t

gi j ~x,s!E
t

s

dt8(
l

N

@]xl
j i j ~x,s!# f l~x,t8!dsL

1K (
j
E

t

t1t

dsgi j ~x,s!(
l

N

@]xl
j i j ~x,s!#(

m
E

t

s

glm~x,t8!j lm~x,t8!dt8L 1•••

1K (
j
E

t

t1t

dsj i j ~x,s!(
l

N

@]xl
gi j ~x,s!#E

t

s

f l~x,t8!dt8L
1K (

j
E

t

t1t

dsj i j ~x,s!(
l

N

@]xl
gi j ~x,s!#(

m
E

t

s

glm~x,t8!j lm~x,t8!dt8L 1•••. ~7!
s.

ven
e
is
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Using Eqs.~3! and ~7!, in the limit t→0, we get the drift
coefficient

Di
(1)~x,t !5 lim

t→0

^Dxi&
t

5 f i~x,t !1(
l

N

(
j

$~]xl
wli

j !gi j ~x,t !gl j ~x,t !

1@]xl
gi j ~x,t !#gl j ~x,t !wli

j ~x,x,t !%, ~8!

in which ]xl
wli

j 5]xl
wli

j (x,y,t)uy5x . Similarly, the diffusive

coefficients read
Dkl
(2)~x,t !5

1

2
lim
t→0

^DxkDxl&
t

5(
j

gl j ~x,t !gk j~x,t !wkl
j ~x,x,t !,

~9!

andDi 1i 2i 3 . . . i n
(n) (x,t)50, for n>3. Therefore, we obtain the

FPE corresponding to Eqs.~1! and ~2! ] tP(x,t)
52( i

N]xi
Di

(1)(x,t)P(x,t)1(kl
N]xk

]xl
Dkl

(2)(x,t)P(x,t).

When gi j (x,t)51, the Fokker-Planck equation for Eq
~1! and ~2! has been derived by Klyatskin and Tatarskii@9#.
But they did not consider the case when the system is dri
by multiplicative temporal-spatial noise. In addition, th
method used in this paper for the derivation of the FPE
different from that used by the authors in Ref.@9#. Here I
used the method of the Kramers-Moyal expansion to de
the FPE, while Klyatskin and Tatarskii used the method
8-2
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differentiating equationPt(x)5^d„x2x(t)…& directly „see
Eq. ~2.7! in Ref. @9#…. Whengi j (x,t)51, our result for the
FPE is in accordance with that of Ref.@9# „see Eq.~2.10! of
Ref. @9#….

From Eqs.~8! and ~9!, we can find that owing to the
action of w(x,x,t) and ]xl

wli
j (x,y,t)uy5x on the stochastic

system, a dramatic change in the characteristic features o
system may occur in contrast with the case when
temporal-spatial noisej i j (x,t) is replaced by the genera
noise j i j (t), except for the case whenwli

j (x,y,t)5hli
j (x

2y). Whenwli
j (x,y,t)5hli

j (x2y) , from Eqs.~8! and~9! we
have Di

(1)(x,t)5 f i(x,t)1( l
N( j„@]xl

hli
j (0)#gi j (x,t)gl j (x,t)

1hli
j (0)gl j (x,t)@]xl

gi j (x,t)#… where ]xl
hli

j (0)5]xl
hli

j (x

2y)ux5y , andDkl
(2)(x,t)5( jhkl

j (0)gl j (x,t)gk j(x,t). Now, it
is clear that temporal-spatial noise has the same influenc
the stochastic system as the general noise@i.e., noisej i j (t)].
For Gaussian white noise, the time factor of the correlat
function is ad function @10#, i.e.,d(t2s) @see Eq.~2!#. One
easily thinks of the case when the space factor of the co
lation function is also a d function, i.e., wli

j (x,y,t)
5)m

Nd(xm2ym). For this case, one can approximately ta
d(xm2ym) as (1/x0

(m))exp@2(1/x0
(m))uxm2ymu#, and choose

x0
(m) appropriately according to the concrete problem stud

by us. Then one getshli
j (0)5)m

N1/x0
m and ]xl

hli
j (0)

5(1/x0
( l )))m

N(21)/x0
(m) .

There is one special case for which we can convert
temporal-spatial noise to the noise not related to space. If
temporal-spatial noisej i j (x,t) is only stochastic fort but not
for x, i.e., giving a certain timet5t0, variablej i j (x,t0) is
not a stochastic function ofx but a deterministic function
of x, so the temporal-spatial noisej i j (x,t) in Eq. ~1!
has the correlation function ^j i j (x,t)jkl(y,s)&
52ADiDkd j l ui j (x)uk j(y)d(t2s), i.e., wik

j (x,y,t)
5ADiDkui j (x)uk j(y) @ui j (x) is a deterministic function of
x], and we can transform the temporal-spatial noisej i j (x,t)
to the general noise byj i j (x,t)5ui j (x)j i j (t), wherej i j (t) is
a Gaussian white noise not related to space with^j i j (t)&
50 and ^j i j (t)jkl(s)&52ADiDkd j l d(t2s). For this case,
we can first get the corresponding Langevin equations w
noise not related to space. Then from the Langevin eq
tions, we can calculate the FPE. Otherwise, i.e., in the g
eral case, temporal-spatial noisej i j (x,t) cannot be translated
into the general noise not related to space.

Below we study two models driven by temporal-spat
noise.

~a! We first consider the transport of the overdamp
Brownian particles in a spatially periodic stochastic syst
@4#. We assume temperatureT of the system is not a constan
It is a stochastic variable with respect tox. So the thermal
additive noise is temporally and spatially related~since the
thermal additive noise strength is proportional toT). The
Langevin equation of the particle is

ẋ5 f ~x!1j~x,t !, ~10!

where f (x)52]xU(x). U(x) is a periodic function ofx
with periodL5b2a52p (a50 andb52p). Here we take
06110
he
e
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it as a symmetric function cosx, and assume that the diffu
sion occurs on a circle with the periodL. The additive
temporal-spatial thermal noise is Gaussian white with z
mean and correlation̂j(x,t)j(y,s)&52Bkw(x)d(t2s), in
which B is a constant friction coefficient,k is the Boltz-
mann’s constant, andw(x) is a correlation function for the
stochastic variableT(x) with respect tox. Here, we assume
w(x)522cos(x/2). Of course,w(x) can be an arbitrary
function of variablex.

According to the above formulas~8! and ~9! we can get
the FPE for Eq.~10!,

] tP~x,t !52]xD
(1)~x!P~x,t !1]x

2D (2)~x!P~x,t !, ~11!

where D (1)(x)5sinx1(D/2)sin(x/2), and D (2)(x)5D„2
2cos(x/2)… (D5Bk). Now, the probability densityP(x,t)
has the periodic boundary conditionP(a,t)5P(b,t).

Our interest for this problem is the stationary solution
the probability and its corresponding probability current. U
ing formula ~11! in Ref. @11#, we can obtain the stationar
solution of Eq.~11!,

P~x!5N
exp@F~x!#

D2~x!
E

a

b

exp@2F~x8!2F~b!u~x2x8!#dx8,

~12!

where F(x)5*a
x@D (1)(x)/D (2)(x)#dx, u(x2x8) is the

Heaviside step function, andN the normalization constant
According to formula~8! in Ref. @11#, the probability current
reads

J5N$12exp@2F~2p!#%

5N„12exp$2@~81D !ln 328#/D%…. ~13!

Equation~13! shows that the condition under which th
flux changes sign is that valueF(2p) can vary from positive
to negative or vice versa. There is a critical valueD0 of D.
WhenD.D0, the flux is positive; while whenD,D0, the
flux is negative. The critical valueD0 can be obtained from
F(2p)50. It is D058(1/ln 321).

We wish to give some explanation of the origin of th
nonzero probability current. Consider a solutionx(t) of Eq.
~10! for a given realization of the noise. Then2x(t) is also
a solution of Eq.~10!, with j(x,t) replaced by2j(2x,t). If
j(x,t) is uncorrelated with space or it is stochastic only
time ~not to space!, this solution2x(t) would have the same
probability asx(t), and there would be no symmetric brea
ing. However, in the presence of noise correlation w
space, the probability, even though it is Gaussian, does
have this symmetry. So a nonzero flux can appear due
symmetry breaking.

We note that Reimannet al.have considered the transpo
of mean field coupled oscillators in the case of symme
potential@12#. In their paper, the asymmetry of the system
induced by a joint action of coupling and multiplicative noi
8-3
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†we also studied this phenomenon~see Ref.@13#!‡. But, in
this paper, the asymmetry is produced by noise correla
with space.

If the spatially periodic system is only driven by usu
thermal additive noise~the temperature is a constant!, no
transport can occur (J50). Transport occurring with genera
thermal additive noise means that thermal fluctuation~only
one heat source! is converted into work and implies a viola
tion of the second law of thermodynamics. This is only f
the case of the general additive noise not related to spac
the spatially periodic system is driven by spatially relat
thermal additive noise, as shown above, there is probably
transport. This does not violate the second law of thermo
namics. Now, we can believe that there are infinite h
sources for the system.

In addition, if the spatially periodic system is driven b
the usual additive and multiplicative Gaussian white no
~there is no correlation between the additive and multipli
tive noise! in the case of symmetric potential, no nonze
current can be induced since no symmetry breaking happ
Here I show that the additive temporal-spatial noise can p
duce nonzero net flux when the potential is symmetric. Th
it is obvious that the temporal-spatial noise has stronger
fects on the transport of particles for model~10! than the
usual additive and multiplicative noises.

~b! Second we consider a model withN globally coupled
oscillators driven by additive noise and multiplicativ
temporal-spatial noise. The multiplicative temporal-spa
noise are induced in the systems containing foreign s
stance~or other spatial stochastic factors! by the external
s

-

-
ili
e
q
ib
qu
e
as
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environmental fluctuations. The stochastic differential eq
tions for oscillators are

ẋi5 f ~xi !1g~xi !j i~xi ,t !2~e/N!(
j

N

~xi2xj !1h i~ t !,

~14!

wherei 51,2,3, . . . ,N. f (x) andg(x) are the continued non
linear functions ofx. j i(x,t) and h i(t) are Gaussian white
noise with zero mean and correlationŝh i(t)h j (s)&
52Dd i j d(t2s), ^j i(xi ,t)j j (yj ,s)&52D8d i j w(xi ,yj )d(t
2s) @D8w(xi ,yj ).0#, and ^j i(xi ,t)h j (s)&50. e is the
globally coupling constant. The mean fields5(1/N)( i

Nxi .
In the thermodynamic limit~i.e., N→`), all the oscilla-

tors have an identical evolution given by the nonlinear s
chastic equation

ẋ5 f ~x!1g~x!j~x,t !2ex1es1h~ t !, ~15!

wheres(t)5^x(t)&, which represents the time-dependent
der parameter. From formulas~8! and ~9!, the FPE for Eq.
~15! can be got as follow:

] tP~x,t !52]xD
(1)~x!P~x,t !1]x

2D (2)~x!P~x,t !, ~16!

in which D (1)(x)5 f (x)2ex1es1D8g8gw(x,x)
1D8g2w8(x,x), andD (2)(x)5D8g2w(x,x)1D. Under the
natural boundary condition, the stationary solution of t
FPE ~16! is
Pst~x!5~1/N!expS Ex

dx
f ~x!2ex1es2D8g~g8w2gw8!2D8g2]xw

D8g2w~x,x!1D
D , ~17!
t
a

hat
e
try-

t
the

for

fic
r-
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tion

m-
wherew85]w(y,x)/]yuy5x and]xw5dw(x,x)/dx. N is the
normalization constant.

A more detailed analysis of Eq.~17! shows that so long a
function f (x) is odd,g(x) odd or even, andw(x,x) even, it
can be observed from Eq.~17! that any states$xi(t)% are
identical with states$2xi(t)%. So a symmetry-breaking non
equilibrium phase transition will appear@3#. The mean field
is s5^x&5F(s)5*2`

` xPst(x)dx, from which the order pa-
rameter can be obtained bym5usu. The critical condition for
the nonequilibrium phase transition is]sF(s)us5051, i.e.,
F8(s50)51 @3#. If the order parameter of the nonequilib
rium phase transition changes continuously, the nonequ
rium phase transition will be of second order, and poss
features similar to those observed at the second-order e
librium phase transition. If the parameter of the nonequil
rium phase transition changes discontinuously, the none
librium phase transition will be of first order and will hav
features similar to those at the first-order equilibrium ph
transition.
b-
ss
ui-
-
i-

e

If noisej i(xi ,t) in model~14! is not temporal-spatial, bu
only general, i.e.,j i(t), the condition for the appearance of
symmetry-breaking nonequilibrium phase transition is t
f (x) is odd, andg(x) is odd or even. But, as the abov
analysis, the condition for the emergence of a symme
breaking phase transition for model~14! is that f (x) is odd,
g(x) odd or even, andw(x,x) even. Thus, we can say tha
temporal-spatial noise can restrict the appearance of
symmetry-breaking nonequilibrium phase transition
model ~14!.

Temporal-spatial noise always exist in a lot of scienti
fields, including biology, physics, chemistry, and their ove
lapping sciences. My result for the study of systems with
temporal-spatial noise can provide a theoretical founda
for studying further these systems.

This research was supported by the Alexander von Hu
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