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System with temporal-spatial noise
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This paper investigates systems driven by temporal-spatial noise using two models, i.e., a spatially periodic
model, and a model with infinite globally coupled oscillators. The study shows that, for the first model, the
temporal-spatial noise has a stronger effect on the transport of particles than the usual additive and multipli-
cative noise; for the second model, the temporal-spatial noise can restrict the appearance of the symmetry-
breaking nonequilibrium phase transition, in contrast with the case when the system is driven by the usual
multiplicative noise.
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When we study a stochastic system, we usually believevhether temporal-spatial noise can be converted to general
that the noise existing in the system is stochastic only withnoise not related to space. So, it becomes necessary to inves-
respect to timg1-5] (Ref.[2] corresponds to the phenom- tigate the systems with temporal-spatial noise. In this paper |
enon of stochastic resonance, RE3] to non-equilibrium will first calculate the Fokker-Planck equati¢RPE) for the
transition, Ref[4] to the transport of particles induced by systems driven by multiplicative temporal-spatial noise, and
noise, and Ref[5] to resonant activation But practically, ~then study two models with this temporal-spatial noise.
any matter inevitably contains a foreign substance and the Consider the following Langevin equations:
space distribution of the foreign substance is wholly stochas-
tic. In addition, when dealing with the problems of con- :
densed matter systems, we always run into some stochastic Xi:fi(x,t”; 9ij (XD &j(x,1), @)
variables(noise with respect to space, such as the space
distribution for the direction of electron spin, and so on. j
Because the foreign substance in the system is stochastic fort & 1) = 0(&i; (1) &(Y,8)) = 25 Wi (X.y,t) 8(t —s),

space(or the space distribution for the direction of the elec- (2)
tron spin is stochastic, and so )prthe multiplicative noise )
caused by the external environmental fluctuation must b&herex={x;,xz, ... Xy}, fi(x,t) andgjj(x,t) are arbitrary

random for space and tinfe general, we express the effect deterministic functions of variables andt, and &;;(x,t) is
of the external environmental fluctuation on the system as€mporal-spatial Gaussian white noise=x;(t), yi=x(s),
multiplicative noise[6,7], and the influence of the internal () denotes averaging over temporal-spatial noise, and
thermal fluctuation on the system as thermal additive nois&lx(x,y,t) are deterministic functions ofx, y and t
[6]), i.e., for the same time multiplicative noise is stochastic[ W/, (X,y,t)>0]. Now, we wish to get a FPE corresponding
at different space. Above we indicate that there is multipli-to Egs.(1) and (2). To do this, we start with the Kramers-
cative noise which is stochastic for time and space. There iMoyal expansion coefficien{dl,8]
also thermal additive noise which is stochastic for time and
space. If temperatur@ of the system studied by us is sto- 1 1
chastic with respect to space, thermal additive noise will be Di(?i)2i3...in(xyt):n_llim;«AXilAXiz' A ) (n=1),
random for time and spadsince the thermal additive noise 0
strength is proportional to the temperaturgo solve this 3
kind of problem, we must use the noise that is stochastic L )
with respect not only to time but also to space. There idn Whichiy,iz,is, ... i;=1,23... N and
another kind of temporal-spatial noise, which is stochastic
only to time (not to spacg such as the systems in which Axi=x;(t+7)—X;(t)
temperaturd depends on spacgi.e., T=T(x), andT(x) is o
a deterministic function ok, and the systems containing in- :J fi[x(s),s]ds
homogeneous substance in which the space distribution of t
the substance is deterministic. e r

In general, one easily mistakenly believes that temporal- +2 J gii[x(s),s]&;[x(s),s]ds.
spatial noise can be converted to the usual multiplicative i Jt
noise not related to space. But in practice, temporal-spatial
noise cannot be transformed to noise not related to spac8elow we only study the Stratonovich case. The Ito case can
except for some special cases. It will be discussed belowe studied in the same way. We assume the expansion
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N Xi(t+7) = x(t)
fi(y,8) =fi(x9) + 2 dy fixS)lyi=x]+ -,

t+r71

+7 N
[ rsass [T ta, sty -xds
t t

t+7
N +~--+2 f gij(X,S)gij(X,S)dS
gij(y15):9ij(XyS)+§|: dx Qi (X S)LY1 =X ]+, (4 It

N
t+7
+Z Jt gij(XuS)El [dx,&ij(X,8)1(y; —x)ds
N t+7 N
§i;(y.s)=§i;(X-S)+Z dx &ij(X,S)yi=x ]+ . (5 +; ft §ij(x,3)2| [5,9ij(x,9) ][y —x Jds+ - - .
(6)
By iterating quantitiesx;(s)—x; in Eq. (6) and taking the
Using Egs.(4) and(5), we get average with respect to the noise distributions, we have

t+71 t+TN S
<Axi>=<ft fi(x,s)o|s>+<ft EI [axlfi(x,s)]ft f|(x,t’)dt’ds>
t+7'N s t+7
Jt Z[ﬁxlfi(x,S)]Ej) Jtg|;(x,t’)§|j(x,t’)dt’d5>+---+<; ft 0ij (X,9)&;(x,s)ds
t+7 S N
S [Toxs [0S [ax,sij(x,s>]f|(x,t’>ds>

t+7 N S
+<2 ft dsg;(x,8) 2 [3y&;(%5)]2 ftg|m<x,t')am<x,t'>dt'>+---
t+7 N S
<E_f dséij(x,8) 2 [axlgij<x,s>]f f|(x,t'>dt’>
t | t

t+7 N S
+ 2 ft dséij(x,5) 2 [0 ij(x,5)] 2, ftg|m<x,t')§|m<x,t'>dt'>+---. (7)

Using Egs.(3) and (7), in the limit 7—0, we get the drift 2 1. (AxAx) )
coefficient Dii (x,t)=§l|n":)f:; 91, (%, D) g (X, Wi (X, X,1),
9)
AX;
DD (x,t)= Iim<Tx'> and Di(;‘i)zis ...i,(x,t)=0, forn=3. Therefore, we obtain the
70 FPE corresponding to Egs.(l) and (2) 4P(x,t)
N _ =39, DM P(x,1) + Zidy, I DY (X, 1) P(x,1).
=fi(x,t)+ >, 2 {(07x|Wfi)gij(X,t)gu(X,t) When g;;(x,t)=1, the Fokker-Planck equation for Eqgs.
b (1) and (2) has been derived by Klyatskin and Tatargli].

But they did not consider the case when the system is driven
) e . . o

by multiplicative temporal-spatial noise. In addition, the

method used in this paper for the derivation of the FPE is
. ) J. J. o o different from that used by the authors in RE9]. Here |
in which dy wj; = dy Wj;(X,y,t) [y—x. Similarly, the diffusive  ysed the method of the Kramers-Moyal expansion to derive
coefficients read the FPE, while Klyatskin and Tatarskii used the method of

+ [y, Gij (%, 1) 181 6 HWh (x,x,1)},
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differentiating equationP,(x) ={5(x—x(t))) directly (see it as a symmetric function cos and assume that the diffu-
Eqg. (2.7) in Ref.[9]). Wheng;;(x,t)=1, our result for the sion occurs on a circle with the period. The additive
FPE is in accordance with that of R¢€] (see Eq(2.10 of  temporal-spatial thermal noise is Gaussian white with zero
Ref.[9]). mean and correlatiofé(x,t) £(y,s))=2Bkw(x) 5(t—s), in
From Egs.(8) and (9), we can find that owing to the which B is a constant friction coefficienk is the Boltz-
action of w(x,x,t) and 07)(|Wfi(x,y,t)|y:X on the stochastic mann’s constant, anai(x) is a correlation function for the
system, a dramatic change in the characteristic features of tfé0chastic variabl&(x) with respect tox. Here, we assume
system may occur in contrast with the case when théV(X)=2—cos/2). Of course,w(x) can be an arbitrary
temporal-spatial nois&;;(x,t) is replaced by the general function of variablex.
noise &;(t), except for the case whew]; (x,y,t) = h}, (x According to the above formula®) and (9) we can get
-vy). Whenw{i(x,y,t)=h{i(x—y) , from Eqgs.(8) and(9) we the FPE for Eq(10),
have DY(x,t)=fi(xt) + 21'%([ 2, (0)]gi; (D) gy (1) . -
+hl;(0)g;;(x.1)[ 5, (x,)])  where 4, hl;(0)=d, hli(x aP(x,t)== DD (X)P(x,t) + DA (x)P(x,1), (11)
~¥)lx-y, andD{P(x,t) ==;h},(0)gy; (x,1)gi;(x,t). Now, it
is clear that temporal-spatial noise has the same influence odhere D) (x) =sinx+(D/2)sin(/2), and D®(x)=D(2

the stochastic system as the general nfiise, noiseg;;(t)]. ~ —cos¢/2)) (D=BK). Now, the probability density°(x,t)
For Gaussian white noise, the time factor of the correlatiorhas the periodic boundary conditiét(a,t) =P(b,t).
function is a¢d function[10], i.e., 8(t—s) [see Eq(2)]. One Our interest for this problem is the stationary solution of

easily thinks of the case when the space factor of the corrghe probability and its corresponding probability current. Us-
lation function is also aé function, i.e., wi(x,y,t) ing formula(11) in Ref.[11], we can obtain the stationary

=TINS(xm—Ym). For this case, one can approximately takeSolution of Eq.(11),
S(Xm—Ym) as (1k{)exd —(1X{™) |Xm—Yml|], and choose

xg“) appropriately according to the concrete problem studied exd ®(x)] (b
by us. Then one getshf(0)=II}1/xg and 4, hf;(0) P(X):NDZ—(X)L exf —®(x") —®(b) (x—x")]dx’,
= (IEOTIR(=1)/x™ . (12)

There is one special case for which we can convert the
temporal-spatial noise to the noise not related to space. If the

=Xrp@® () —x") i
temporal-spatial nois§;(x,t) is only stochastic fot but not wherg _cb(x) Jo[D _(X)/D (9 Jdx, ‘9().( X ) is the
for x, i.e., giving a certain time=t, variable&;(x to) is Heaviside step function, anN the normalization constant.

not a stochastic function of but a deterministic function ~ccording to formula®8) in Ref.[11], the probability current

of x, so the temporal-spatial noisg;(x,t) in Eq. (1) reads

has the  correlation  function (&;(x,t)&q(y.s))

:Z\IDka5j|Uij(X)Ukj(y) 5(t_5), i.e., Wfk(X,y,t) J= N{l_exq_q)(Z’ﬁ)]}

=D;Dyu;i; (X uii(y) [u;i (X) is a deterministic function of _

x], and we can transform the temporal-spatial n@jgéx,t) =N(1—exp—[(8+D)In3—-8]/D}). (13
to the general noise b§;(x,t) = u;;(x) &;;(t), where;;(t) is
a Gaussian white noise not related to space wif(t)) Equation(13) shows that the condition under which the
=0 and (&;(t)&q(s))=2D;Dy5; 8(t—s). For this case, fluxchanges sign is that valde(2) can vary from positive
we can first get the corresponding Langevin equations witl{o negative or vice versa. There is a critical vaDg of D.
noise not related to space. Then from the Langevin equa/’henD>Dy, the flux is positive; while whe <D,, the
tions, we can calculate the FPE. Otherwise, i.e., in the gerflux is negative. The critical valuB, can be obtained from
eral case, temporal-spatial noigg(x,t) cannot be translated ®(2m)=0. Itis Do=8(1/In3-1).

into the general noise not related to space. We wish to give some explanation of the origin of the
Below we study two models driven by temporal-spatial nonzero probability current. Consider a solutwft) of Eq.
noise. (10) for a given realization of the noise. Thenx(t) is also

(a) We first consider the transport of the overdampeda solution of Eq(10), with £(x,t) replaced by— &(—x,t). If
Brownian particles in a spatially periodic stochastic systemé(x,t) is uncorrelated with space or it is stochastic only to
[4]. We assume temperatufeof the system is not a constant. time (not to spacg this solution—x(t) would have the same
It is a stochastic variable with respectoSo the thermal probability asx(t), and there would be no symmetric break-
additive noise is temporally and spatially relat@ihce the ing. However, in the presence of noise correlation with
thermal additive noise strength is proportional &. The  space, the probability, even though it is Gaussian, does not

Langevin equation of the particle is have this symmetry. So a nonzero flux can appear due to
. symmetry breaking.
x=f(x)+&(x,1), (10 We note that Reimanet al. have considered the transport

of mean field coupled oscillators in the case of symmetric
where f(x)=—4d,U(x). U(x) is a periodic function ofx  potential[12]. In their paper, the asymmetry of the system is
with periodL=b—a=2# (a=0 andb=27). Here we take induced by a joint action of coupling and multiplicative noise
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[we also studied this phenomen¢see Ref[13])]. But, in  environmental fluctuations. The stochastic differential equa-
this paper, the asymmetry is produced by noise correlatiotions for oscillators are

with space.

If the spatially periodic system is only driven by usual . N
thermal additive noisdthe temperature is a constanho X = F(0) + 90 & (% ) = (e/N) 2 (x;=x)) + 7i(1),
transport can occurJ&0). Transport occurring with general . (14)

thermal additive noise means that thermal fluctuationly

one heat sourgas converted into work and implies a viola- \herei=12,3 ... N. f(x) andg(x) are the continued non-

tion of the second law of thermodynamics. This is only for|inear functions ofx. &(x,t) and 7,(t) are Gaussian white

the case of the general additive noise not related to space. {fjise with zero mean and correlationé; (t) 7:(s))

the spatially periodic system is driven by spatially related:2D5i_5(t_S), (&0 DE(Y; ,S)>=2D'5i-W(IXi ,y’) S(t

thermal additive noise, as shown above, there is probably the 5) [5’w(x- y)>0], and '<§,J(X, t)n-(s)>=10 < is the
i1 3 i i i .

transport. This does not violate the second law of thermody-I I i Th fi 1N) S Ny
namics. Now, we can believe that there are infinite heafJ obally coupling constant. The mean fiedd (1/N) 2;7x; .

In the thermodynamic limiti.e., N—<), all the oscilla-
sources for the system.

In addition, if the spatially periodic system is driven by tors have an identical evolution given by the nonlinear sto-

- A : . 2 chastic equation
the usual additive and multiplicative Gaussian white noise q

(there is no correlation between the additive and multiplica- :

tive noisg in the case of symmetric potential, no nonzero x=F(x)+g(x)&(x,1) — ex+es+ (1), (195
current can be induced since no symmetry breaking happens. . .

Here | show that the additive temporal-spatial noise can prowheres(t) =(x(t)), which represents the time-dependent or-
duce nonzero net flux when the potential is symmetric. Thusder parameter. From formuld8) and (9), the FPE for Eq.

it is obvious that the temporal-spatial noise has stronger ef15) can be got as follow:

fects on the transport of particles for moddl0) than the

usual additive and multiplicative noises. IP(X,1)==,DD(X)P(x,t) +3ZDPD(x)P(x,1), (16)
(b) Second we consider a model withglobally coupled
oscillators driven by additive noise and multiplicative in which DM (x)=f(x)— ex+es+D’g’ gw(x,x)

temporal-spatial noise. The multiplicative temporal-spatial+D’g?w’(x,x), andD®)(x)=D"g?w(x,x)+ D. Under the
noise are induced in the systems containing foreign subratural boundary condition, the stationary solution of the
stance(or other spatial stochastic factprby the external FPE(16) is

x  f(x)—ex+es—D’'g(g’'w—gw’')—D’'g?dw
Pst(x)=(1/N)exp( J dx ® 9lg'w—gw')~ D'g%dx , 17)
D’g?w(x,x)+D
|
wherew’ = ow(y,x)/dy|,-y anddw=dw(x,x)/dx. Nis the If noise &(x; ,t) in model(14) is not temporal-spatial, but
normalization constant. only general, i.e.£;(t), the condition for the appearance of a

A more detailed analysis of E¢L7) shows that so long as  symmetry-breaking nonequilibrium phase transition is that
function f(x) is odd,g(x) odd or even, anev(x,x) even, it  f(x) is odd, andg(x) is odd or even. But, as the above
can be observed from Eq17) that any stategx;(t)} are  analysis, the condition for the emergence of a symmetry-
identical with state$—x;(t)}. So a symmetry-breaking non- preaking phase transition for moddH) is thatf(x) is odd,
_equilibrium phase Otcransition will appeﬁﬁ]: The mean field g(x) odd or even, anav(x,x) even. Thus, we can say that
is s=(x)=F(s)=J~.xPs(x)dx, from which the order pa- temporal-spatial noise can restrict the appearance of the
rameter can be obtained by=|s|. The critical condition for  symmetry-breaking nonequilibrium phase transition for
the nonequilibrium phase transition igF(s)|s-o=1, i.e., model (14).

F’(s=0)=1 [3]. If the order parameter of the nonequilib- ~ remnoral-spatial noise always exist in a lot of scientific
rium phase transition changes continuously, the noneqU|I|bﬁe|dS, including biology, physics, chemistry, and their over-

rium phase transition will be of second order, and posses : : M It for th f ith th
features similar to those observed at the second-order equ[|—pplng sciences. My result for the study of systems with the

librium phase transition. If the parameter of the nonequilib- emporal_—spatial noise can provide a theoretical foundation
. " : ! : for studying further these systems.

rium phase transition changes discontinuously, the nonequi-
librium phase transition will be of first order and will have
features similar to those at the first-order equilibrium phase This research was supported by the Alexander von Hum-
transition. boldt Foundation.
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